已知f(x)=ax^2+bx+c,其中a为正整数,b为自然数,c为整数
问题描述:
已知f(x)=ax^2+bx+c,其中a为正整数,b为自然数,c为整数
若对于任意实数x,不等式4x≤f(x)≤2(x^2+1)恒成立,且存在x0使得f(x0)
数学人气:674 ℃时间:2019-11-14 01:43:45
优质解答
中学生吧~
思路:
在同一个坐标系上做出y=4x和y=2(x^2+1)的图,这个应该会吧~如果不会就不用往下看了~
你要求的f(x)的图应该在上面两者之内,可知c应在(0,2)之间,由题目得c为整数,所以c=1.
还可以再算加以确认:
c应在(0,2)之间,但并不是这个区间里的都满足要求.
设g(x)=2(x^2+1)+k,这是一个形状与y=2(x^2+1)相同的抛物线,求g(x)与直线y=4x相切时的交点,确定g(x)里的k值,求出g(x)与y轴的交点,那么这个交点与2之间就是c的取值范围,由题目得c为整数,所以c=1.
思路:
在同一个坐标系上做出y=4x和y=2(x^2+1)的图,这个应该会吧~如果不会就不用往下看了~
你要求的f(x)的图应该在上面两者之内,可知c应在(0,2)之间,由题目得c为整数,所以c=1.
还可以再算加以确认:
c应在(0,2)之间,但并不是这个区间里的都满足要求.
设g(x)=2(x^2+1)+k,这是一个形状与y=2(x^2+1)相同的抛物线,求g(x)与直线y=4x相切时的交点,确定g(x)里的k值,求出g(x)与y轴的交点,那么这个交点与2之间就是c的取值范围,由题目得c为整数,所以c=1.
我来回答
类似推荐
- 已知函数f(x)=ax^2+bx+c,a为正整数,b为自然数,c为整数
- 已知二次函数f(x)=ax^+bx+c和一次函数g(x)=-bx,其中a.b.c满足a>b>c,a+b+c=0,(a.b.c属于全体自然数)
- 已知函数f(x)=(ax^2+1)/(bx+c)是奇函数(a,b,c是整数),又f(1)=2,f(2)
- 二次函数f(x)=ax2+bx+c,(a是正整数),c≥1,a+b+c≥1,方程ax2+bx+c=0有两个小于1的不等正根,则a的最小值为( ) A.2 B.3 C.4 D.5
- 设f(x)=x^n+ax^2+bx+c,n为自然数,已知f(-1)=0,f(1)=-6,f(2)=-9,f(3)=-4,f(6)=119,...
答
中学生吧~
思路:
在同一个坐标系上做出y=4x和y=2(x^2+1)的图,这个应该会吧~如果不会就不用往下看了~
你要求的f(x)的图应该在上面两者之内,可知c应在(0,2)之间,由题目得c为整数,所以c=1.
还可以再算加以确认:
c应在(0,2)之间,但并不是这个区间里的都满足要求.
设g(x)=2(x^2+1)+k,这是一个形状与y=2(x^2+1)相同的抛物线,求g(x)与直线y=4x相切时的交点,确定g(x)里的k值,求出g(x)与y轴的交点,那么这个交点与2之间就是c的取值范围,由题目得c为整数,所以c=1.