如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD. (1)用尺规作图的方法,过D点作DM⊥BE,垂足是M;(不写作法,保留作图痕迹) (2)求证:BM=EM.
问题描述:
如图所示,△ABC是等边三角形,D点是AC的中点,延长BC到E,使CE=CD.
(1)用尺规作图的方法,过D点作DM⊥BE,垂足是M;(不写作法,保留作图痕迹)
(2)求证:BM=EM.
答
(1)作图如下;
(2)证明:∵△ABC是等边三角形,D是AC的中点
∴BD平分∠ABC(三线合一)
∴∠ABC=2∠DBE
∵CE=CD
∴∠CED=∠CDE
又∵∠ACB=∠CED+∠CDE
∴∠ACB=2∠E
又∵∠ABC=∠ACB
∴2∠DBC=2∠E
∴∠DBC=∠E
∴BD=DE
又∵DM⊥BE
∴BM=EM.