你能证明吗?已知平面内的任意4点,其中任何3点都不在同一条直线上,.试问是否一定能从这4点中选出3点构成一个三角形,使得这个三角形至少有一个内角不大于45°?证明你的结论.
问题描述:
你能证明吗?已知平面内的任意4点,其中任何3点都不在同一条直线上,.试问是否一定能从这4点中选出3点构成一个三角形,使得这个三角形至少有一个内角不大于45°?证明你的结论.
答
反证法:假设存在这样4个点, 使得从这4点中任选出3点都构成一个三角形,且每个内角都大于45°。 由此 我们导出矛盾。
设这四个点为 A,B,C,D. 因为 任何3点都不在同一条直线上,所以 任何3点都形成三角形。而形成的必然是锐角三角形。(不然,则一个角 >= 90度,剩下的两个角中,必有一个角 这4个点中 必然存在两点, 设为A, C, 使得 B, D 两点分别在直线AC的两侧。而ACB 和 ACD 都必然是锐角三角形。 于是 ABD 是个三角形, 角 BAD = 角BAC + 角DAC 角 BAD = 角BAC + 角DAC > 45 + 45 = 90 度. 于是 三角形 ABD不是 锐角三角形。 这与前面得到的 “形成的必然是锐角三角形” 矛盾!
所以 一定能从这4点中选出3点构成一个三角形,使得这个三角形至少有一个内角不大于45°
答
证明:因为任何3点都不在同一条直线上,所以这4个点可以围成一个一个四边形,分别连接四边形的两个对角顶点,使四边形的四个内角被分成了8份,这8个角就是四个点所形成的所有三角形的内角.因为四边形内六角之和等于360°...