已知|x|≤1,|y|≤1,那么|y+1|+|2y-x-4|的最小值是_.
问题描述:
已知|x|≤1,|y|≤1,那么|y+1|+|2y-x-4|的最小值是______.
答
∵|x|≤1,|y|≤1,
∴-1≤x≤1,-1≤y≤1,
故可得出:y+1≥0;2y-x-4<0,
∴|y+1|+|2y-x-4|=y+1+(4+x-2y)=5+x-y,
当x取-1,y取1时取得最小值,所以|y+1|+|2y-x-4|min=5-1-1=3.
故答案为:3.