如何分解形如n^3+6n^2+11n+6 至(n+1)(n+2)(n+3)

问题描述:

如何分解形如n^3+6n^2+11n+6 至(n+1)(n+2)(n+3)

n^3+6n^2+11n+6 = n^3+1+6n^2+11n+5 =(n+1)(n^2-n+1)+(6n+5)(n+1 =(n+1)(n^2-n+1+6n+5) =(n+1)(n^2+5n+6) =(n+1)(n+2)(n+3)