1+(1/2)+(1/6)+(1/12)+(1/20).+(1/99乘100)

问题描述:

1+(1/2)+(1/6)+(1/12)+(1/20).+(1/99乘100)

1+(1/2)+(1/6)+(1/12)+(1/20)........+(1/9900)
=1+(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/99-1/100)
=1-1/100
=99/100

1+(1/2)+(1/6)+(1/12)+(1/20).+(1/99乘100)
=1+(1-1/2)+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+……+(1/99-1/100)
=1-1/100
=99/100