关于数列收敛性定义众所周知 每个 收敛数列 “都” 具有保号性,(就是数列限若是正数,存在一个正整数N,数列在第N项之后每一项也都大于0)参见同济六版p29.那么请问 数列 (-1/n)^n,n无穷大时,它趋向0,存在极限,那么它应该是收敛的,但它与保号性不符.
问题描述:
关于数列收敛性定义
众所周知 每个 收敛数列 “都” 具有保号性,(就是数列限若是正数,存在一个正整数N,数列在第N项之后每一项也都大于0)参见同济六版p29.那么请问 数列 (-1/n)^n,n无穷大时,它趋向0,存在极限,那么它应该是收敛的,但它与保号性不符.
答
数列 (-1/n)^n,n无穷大时,它趋向0,存在极限,但是这里的极限值是0,0不是正数,怎么能适用于你所说的保号性呢?这种保号性只有在极限值不等于零的时候才是成立的,极限为0的情形不成立.另外,以数学专业的角度来说,“每个...