已知a、b互为相反数,c、d互为倒数,m的倒数等于他本身,代数式cd+(a+b)-|m|的值是
问题描述:
已知a、b互为相反数,c、d互为倒数,m的倒数等于他本身,代数式cd+(a+b)-|m|的值是
答
答案为0。
解析:c、d互为倒数,则有cd=1,a、b互为相反数,则有a+b=0,m的倒数等于它本身,则m=1,所以:cd+(a+b)-m=1+0-1=0。
答
a,b互为相反数,相加得零。c,d互为倒数,相乘得1。m为1或-1。故原式得0。
答
由题意可知a+b=0
cd=1
m=±1
所以cd+(a+b)-|m|
=1+0-1
=0
答
a+b=0
cd=1
m=±1
cd+(a+b)-|m|
=1+0+1
=2
如果您认可我的答案,请点击下面的“选为满意回答”按钮,谢谢!
答
hf39724561 ,
cd+(a+b)-|m|
=1+0-1
=0
答
a、b互为相反数则 a+b=0 c、d互为倒数则 cd=1 m的倒数等于他本身说明m=1或m=-1即
|m|=1 所以
代数式cd+(a+b)-|m|
=1+0-1
=1-1
=0