求证:x^9999+x^8888+x^7777.x^2222+x^1111+1 能被x^9+x^8+x^7.x^1+1整除
问题描述:
求证:x^9999+x^8888+x^7777.x^2222+x^1111+1 能被x^9+x^8+x^7.x^1+1整除
答
利用公式x^n-1=(x-1)(x^n-1+x^n-2+...+x+1)
求证:x^9999+x^8888+x^7777.x^2222+x^1111+1 能被x^9+x^8+x^7.x^1+1整除
利用公式x^n-1=(x-1)(x^n-1+x^n-2+...+x+1)