题干如下:设总体X的概率密度为f(x;μ,θ)=(1/θ)*e^(-(x-μ)/θ),试求μ,θ的矩估计量答案中μ1=E(X)=∫μ∞x*1/θ*e^(-(x-μ)/θ)dx=μ+θ,u2=E(X^2)=u^2+2θ﹙μ+θ﹚积分过程稍嫌简略,望广大知友具体步骤详细推演一下,

问题描述:

题干如下:设总体X的概率密度为f(x;μ,θ)=(1/θ)*e^(-(x-μ)/θ),试求μ,θ的矩估计量
答案中μ1=E(X)=∫μ∞x*1/θ*e^(-(x-μ)/θ)dx=μ+θ,u2=E(X^2)=u^2+2θ﹙μ+θ﹚积分过程稍嫌简略,望广大知友具体步骤详细推演一下,