已知向量a=(cosx,sinx) b=(-cosx,根号3/2cosx) c=(-1,0)1.当x=π/6时 将c用a,b 表示2.已知f(x)=2a·b+2 求f(x)的减区间和对称中心及f(x)在x∈[0,π/2]时的值域3.在(2)的条件下y=f(x)可由y=cosx经过怎样的平移和伸缩变化而得到详细过程 谢谢没错啊 我知道很麻烦啊 容易了老师会让我们做么。。。- -

问题描述:

已知向量a=(cosx,sinx) b=(-cosx,根号3/2cosx) c=(-1,0)
1.当x=π/6时 将c用a,b 表示
2.已知f(x)=2a·b+2 求f(x)的减区间和对称中心及f(x)在x∈[0,π/2]时的值域
3.在(2)的条件下y=f(x)可由y=cosx经过怎样的平移和伸缩变化而得到
详细过程 谢谢
没错啊 我知道很麻烦啊 容易了老师会让我们做么。。。- -

你确定题目没有错么?算起来很麻烦,。。。

1)x=π/6,则a=(√3/2,1/2) b=(-√3/2,3/2),令c=na+mb,解得n=-√3/2,m=√3/6,所以c=(-√3/2)a+(√3/6)b2)f(x)=2(cosx)^2+√3sinxcosx+2=1+cos2x+√3/2*sin2x+2=cos2x+√3/2sin2x+3=√7/2*sin(2x+arctan2√3/3)+3,那...