方程(x^3-3x^2+x-2)(x^3-x^2-4x+7)+6x^2-15x+18=0的全部相异实根是
问题描述:
方程(x^3-3x^2+x-2)(x^3-x^2-4x+7)+6x^2-15x+18=0的全部相异实根是
如题
答
x^6+x^5(-1-3)+x^4(-4+3+1)+x^3(7+12-1-2)+x^2(-21-4+2)+x(7+8)-14+6x^2-15x+18=0x^6-4x^5+16x^3-17x^2+4=0x^6-4x^4-4x^5+16x^3+4x^4-16x^2-x^2+4=0(x^2-4)(x^4-4x^3+4x^2-1)=0(x^2-4)[(x^2-2x)^2-1]=0(x^2-4)(x^2-2...