如图,在Rt△ABC中,∠A=90°,AB=6cm,AC=8cm,以斜边BC上距离B点6cm的点P为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个三角形重叠部分的面积是______cm2.

问题描述:

如图,在Rt△ABC中,∠A=90°,AB=6cm,AC=8cm,以斜边BC上距离B点6cm的点P为中心,把这个三角形按逆时针方向旋转90°至△DEF,则旋转前后两个三角形重叠部分的面积是______cm2

过P作PM⊥AC于M,PN⊥DF于N,如图,∵以斜边BC上距离B点6cm的点P为中心,把这个三角形按逆时针方向旋转90°至△DEF,∴∠KPH=90°,∠KGH=90°,∴∠MPN=90°,∴∠KPN=∠MPH,∵PC=PF,∠C=∠F,∴Rt△PCM≌Rt△PFN...
答案解析:过P作PM⊥AC于M,PN⊥DF于N,由以斜边BC上距离B点6cm的点P为中心,把这个三角形按逆时针方向旋转90°至△DEF,根据旋转的性质得∠KPH=90°,∠KGH=90°,得∠MPN=90°,易证Rt△PCM≌Rt△PFN,得到PM=PN,则四边形PMGN为正方形,Rt△PNK≌Rt△PMH,由PM∥AB,PM:AB=CP:CB,得到PM=

12
5
,于是S重叠=S正方形PMGN=(
12
5
)2=
144
25

考试点:旋转的性质;正方形的判定与性质.
知识点:本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了正方形的判定与性质、三角形全等的判定与性质.