如图(a),AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠DAC=∠BAC;(2)若直径AB=4,AD=3,试求∠BAC的度数;(3)若把直线EF向上平移,如图(b),EF交⊙O于G、C两点,若题中的其他条件不变,这时还有与∠DAC相等的角吗?如果有请直接指出是哪一个,如果没有请说明理由.
问题描述:
如图(a),AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.
(1)求证:∠DAC=∠BAC;
(2)若直径AB=4,AD=3,试求∠BAC的度数;
(3)若把直线EF向上平移,如图(b),EF交⊙O于G、C两点,若题中的其他条件不变,这时还有与∠DAC相等的角吗?如果有请直接指出是哪一个,如果没有请说明理由.
答
证明:(1)连OC,则OC=OA,∴∠BAC=∠OCA (1分)∵EF切⊙O于C,∴OC⊥EF ...
答案解析:(1)连OC,构建平行线OC∥AD.然后由两直线平行,内错角相等推知∠OCA=∠DAC,再根据等腰三角形OAC两个底角相等的性质知,∠BAC=∠OCA,所以根据等量代换易证明:∠DAC=∠BAC;
(2)连BC,构建相似三角形△ADC∽△ACB,然后根据相似三角形的对应边成比例求得AC=2
,最后在Rt△ABC中,利用余弦三角函数的定义求得∠BAC的度数;
3
(3)根据(2)的思路,可以直接写出答案.
考试点:切线的性质;相似三角形的判定与性质.
知识点:本题考查了相似三角形的判定与性质、切线的性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.