有一系列等式:1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+1=292=(42+3×4+1)2…(1)根据你的观察、归纳、发现的规律,写出8×9×10×11+1的结果______(2)试猜想n(n+1)(n+2)(n+3)+1是哪一个数的平方,并予以证明.
问题描述:
有一系列等式:
1×2×3×4+1=52=(12+3×1+1)2
2×3×4×5+1=112=(22+3×2+1)2
3×4×5×6+1=192=(32+3×3+1)2
4×5×6×7+1=292=(42+3×4+1)2
…
(1)根据你的观察、归纳、发现的规律,写出8×9×10×11+1的结果______
(2)试猜想n(n+1)(n+2)(n+3)+1是哪一个数的平方,并予以证明.
答
(1)根据观察、归纳、发现的规律,得到8×9×10×11+1=(82+3×8+1)2=892;故答案为:892;(2)依此类推:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2,理由如下:等式左边=(n2+3n)(n2+3n+2)+1=n4+6n3+9n2+2n2+6n...
答案解析:(1)根据规律列式进行计算即可得解;
(2)观察规律不难发现,四个连续自然数的乘积与1的和等于第一个数的平方,加上前第一个数的3倍再加上1然后平方.
考试点:完全平方公式.
知识点:此题考查了完全平方公式,仔细观察题目信息,得到变化规律是解题的关键,利用多项式的乘法运算法则进行计算时较为复杂,要仔细运算.