关于方差存在的总体X,X1、X2...Xn是取自总体的简单随机样本,EX^2的矩估计量的问题样本均值为(X均),样本方差为S^2,为什么EX^2的估计量是(n-1)/n*S^2+(X均)^2根据公式EX^2=DX+(EX)^2 EX的无偏估计是(X均)所以(n-1)/n*S^2+(X均)^2的后半部分我理解,但DX的无偏估计不是S^2吗?为什么要乘以(n-1)/n而变成n分1的∑(X-X均)^2,那个不是DX的有偏估计吗?矩估计不是要求无偏估计吗?
问题描述:
关于方差存在的总体X,X1、X2...Xn是取自总体的简单随机样本,EX^2的矩估计量的问题
样本均值为(X均),样本方差为S^2,为什么EX^2的估计量是(n-1)/n*S^2+(X均)^2
根据公式EX^2=DX+(EX)^2 EX的无偏估计是(X均)所以(n-1)/n*S^2+(X均)^2的后半部分我理解,但DX的无偏估计不是S^2吗?为什么要乘以(n-1)/n而变成n分1的∑(X-X均)^2,那个不是DX的有偏估计吗?矩估计不是要求无偏估计吗?
答