解三角函数值 sin(-67\12π) 他为什么能等于sin(5/12*π) 然后具体步骤
问题描述:
解三角函数值 sin(-67\12π) 他为什么能等于sin(5/12*π) 然后具体步骤
答
sin(-67/12π)=sin((-6π)+5/12π)=sin(5/12π),这是因为sinx是周期函数,2π的整数倍都是其周期
答
解正弦的周期为2π
sin(-67π/12)=sin(6π-67π /12 ) =sin(5π/12)
答
sin(-67\12π)=sin(-67\12π + 6π) =sin(5/12*π)
一定要加上2π的整数倍
答
sin(-67\12π)=sin(-67\12π+6π)=sin(5/12*π)
因为在坐标系中2π 是一周,任何三角函数都是以2kπ为周期的周期函数。其中K为整数
答
sin(-67\12π)=sin(-67\12π + 6π) =sin(5/12*π) =sin75度
答
你的题有问题吧 是sin(-67/12*π)吧 sinx=sin(x+2π) -67/12*π + 2π*3=5/12*π 你看对不?