(积分)设函数f在区间[0,1]上可微,且满足1/2f(1)=∫(1/2,0)xf(x)dx(其中∫(1/2,0)表示定积分在[0,1/2]上),证明至少存在一点a属于(0,1),使f '(a)=-f(a)/a急,在线等!追加悬赏!
问题描述:
(积分)设函数f在区间[0,1]上可微,且满足1/2f(1)=∫(1/2,0)xf(x)dx
(其中∫(1/2,0)表示定积分在[0,1/2]上),证明至少存在一点a属于(0,1),使f '(a)=-f(a)/a
急,在线等!
追加悬赏!
答
即af'(a)+f(a)=0注意到左边=[xf(x)]'|x=a ,转化为证此函数的导函数有零点,当然用罗尔中值定理,只需证明函数有两点值相同即可现在有1/2f(1)=∫(1/2,0)xf(x)dx构造g(x)=∫(x,0)tf(t)dtg(1/2)=1/2f(1)g'(x)=xf(x),...