在△ABC中,若tanA(tanB-tanC)=tanBtanC,则(sinA/sinC)^2+(sinB/sinC)^2= A.1 B.2 C.3 D.4
问题描述:
在△ABC中,若tanA(tanB-tanC)=tanBtanC,则(sinA/sinC)^2+(sinB/sinC)^2= A.1 B.2 C.3 D.4
答
由tanA(tanB-tanC)=tanBtanC得tanAtanB=tanC(tanA+tanB),所有的切化弦
(sinAsinB)/(cosAcosB)=sinC/cosC(sinA/cosA+sinB/cosB)
即:(sinAsinB)/(cosAcosB)=sinC^2/cosCcosAcosB
所以:sinAsinB=sinC^2/cosC
即:sinC^2=sinAsinBcosC
利用正弦定理和余弦定理:
c^2=ab(a^2+b^2-c^2)/2ab
3c^2=a^2+b^2
3=a^2/c^2+b^2/c^2
所以:(sinA/sinC)^2+(sinB/sinC)^2=a^2/c^2+b^2/c^2=3
故选C
解答者
野狼