设函数f(x)=(a/2)x^2(a≠0),g(x)=x+1/e^x.证明:当a≥1时,不等式(1-(a/2)x^2)e^x≤x+1.对任意x属于【0,+∞)恒成立
问题描述:
设函数f(x)=(a/2)x^2(a≠0),g(x)=x+1/e^x.证明:当a≥1时,不等式(1-(a/2)x^2)e^x≤x+1.
对任意x属于【0,+∞)恒成立
答
设函数f(x)=(a/2)x^2(a≠0),g(x)=x+1/e^x.证明:当a≥1时,不等式(1-(a/2)x^2)e^x≤x+1.
对任意x属于【0,+∞)恒成立