已知函数f(x)的定义域为{ x|x≠kπ},且对于定义域内的任何x,y有f(x-y)=f(x)f(y)+1 / f(y)-f(x)成立
问题描述:
已知函数f(x)的定义域为{ x|x≠kπ},且对于定义域内的任何x,y有f(x-y)=f(x)f(y)+1 / f(y)-f(x)成立
已知函数f(x)的定义域为{ x|x≠kπ},且对于定义域内的任何x,y有f(x-y)=f(x)f(y)+1 / f(y)-f(x)成立,且f(a)=1(a为大于0的常数),当0
答
1)f(x-a)=(f(x)+1)/(1-f(x))
f(a-x)=(f(x)+1)/(f(x)-1)
即 f(x)=-f(-x)
故 为奇函数
2) f(x-a)=(f(x)+1)/(1-f(x))
=(f(x+a)+1-f(a+x))/(1-f(x+a)-f(x+a)-1)
=-1/f(x+a)
所以 f(x)=-1/f(x+2a)=f(x+4a)
故 为周期性函数 T=4a
3)f(a)=1 故 f(-a)=-1 因此 f(3a)=-1
f(2a)=f(a-(-a))=(f(a)f(-a)+1)/(f(-a)-f(a))=0
因为 0