已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(-2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.

问题描述:

已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.
(1)求2※4的值;
(2)求(1※4)※(-2)的值;
(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;
(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.

(1)2※4=2×4+1=9;(2)(1※4)※(-2)=(1×4+1)×(-2)+1=-9;(3)(-1)※5=-1×5+1=-4,5※(-1)=5×(-1)+1=-4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1.∴a※(b+c)+1=a※b+a...
答案解析:读懂题意,掌握规律,按规律计算每个式子.
考试点:有理数的混合运算.


知识点:解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.