七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ)=W2
问题描述:
七、设W1和W2是n维向量空间V的两个子空间,且维数之和为n,证明:存在V上的线性变换σ,使ker(σ)=W1,Im(σ)=W2
答
设ε1……εr和α1……αn-r分别是W1和W2的一组基,可知ε1……εr可扩充为V的一组基,设扩充后这组基变为ε1……εn,则对于V中的任意一个元素ζ=k1ε1+……+knεn,设变换σ把它变换为η=k(r+1)α1+……+knαn-r,可知...