证明在复数域上若m阶方阵A与n阶方阵B没有公共的特征根,则矩阵方程AX=XB只有零解.

问题描述:

证明在复数域上若m阶方阵A与n阶方阵B没有公共的特征根,则矩阵方程AX=XB只有零解.

你说的没错,本来应该用O代表正交矩阵。这样的话,不是容易和零矩阵混淆了酉矩阵---Unitary Matrix(复数域上) ,orthogonal Mathix ---正交矩阵(

把X按列拉成向量vec(X),那么原方程等价于(I*A-B^T*I)vec(X)=0其中I*A和B^T*I都是Kronecker乘积.注意I*A-B^T*I的特征值恰好是所有的λ_i-μ_j,其中λ_i和μ_j分别是A和B的特征值,从而结论成立.也可以用上三角化来证明...