求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.
问题描述:
求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.
答
知识点:研究函数的性质时,利用图象更直观.“函数”是贯穿于高中数学的一条主线,函数图象又是表述函数问题的重要工具,因此,巧妙运用函数图象,能够变抽象思维为形象思维,有助于把握数学问题的本质.
∵|x|>0,
∴函数的定义域是{x|x∈R且x≠0}.显然y=log2|x|是偶函数,
它的图象关于y轴对称.又知当x>0时,y=log2|x|⇔y=log2x.
故可画出y=log2|x|的图象如下图.
由图象易见,
其递减区间是(-∞,0),递增区间是(0,+∞).
答案解析:先对x的取值进行讨论去掉绝对值符号,转化成对数函数的形式,再结合画图:利用对数函数的图象与性质解决问题.
考试点:对数函数的定义域;对数函数的图像与性质;对数函数的单调区间.
知识点:研究函数的性质时,利用图象更直观.“函数”是贯穿于高中数学的一条主线,函数图象又是表述函数问题的重要工具,因此,巧妙运用函数图象,能够变抽象思维为形象思维,有助于把握数学问题的本质.