二次型f(x1,x2,x3)=2x^2-2x1x2+2x^2+2x2x3+2x3^2的矩阵A=f(x1,x2,x3)=2x1^2-x1x2+0 x1x3-x2x1+2x2^2+x2x3+0 x3x1+x3x2+2x3^2(2 -1 0)(x1)=(x1,x2,x3)(-1 2 1)(x2)(0 1 2)(x3)2x1^2-x1x2+0 x1x3-x2x1+2x2^2+x2x3+0 x3x1+x3x2+2x3^2这一长串怎么来的为什么有了(x1,x2,x3)又有竖的那排x1x2x3
问题描述:
二次型f(x1,x2,x3)=2x^2-2x1x2+2x^2+2x2x3+2x3^2的矩阵A=
f(x1,x2,x3)=2x1^2-x1x2+0 x1x3-x2x1+2x2^2+x2x3+0 x3x1+x3x2+2x3^2
(2 -1 0)(x1)
=(x1,x2,x3)(-1 2 1)(x2)
(0 1 2)(x3)
2x1^2-x1x2+0 x1x3-x2x1+2x2^2+x2x3+0 x3x1+x3x2+2x3^2
这一长串怎么来的
为什么有了(x1,x2,x3)又有竖的那排x1x2x3
答