设F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1的直线l与C交于A,B两点.若AB⊥AF2,|AB|:|AF2|=3:4,则椭圆的离心率为_.
问题描述:
设F1,F2是椭圆C:
+x2 a2
=1(a>b>0)的左、右焦点,过F1的直线l与C交于A,B两点.若AB⊥AF2,|AB|:|AF2|=3:4,则椭圆的离心率为______. y2 b2
答
∵F1,F2是椭圆C
+x2 a2
=1(a>b>0)的左、右焦点,过F1的直线l与C交于A,B两点,AB⊥AF2,|AB|:|AF2|=3:4,如图:y2 b2
∴不妨令|AB|=3,|AF2|=4,再令|AF1|=x,由椭圆的定义得:|AF1|+|AF2|=2a,①|BF1|+|BF2|=2a②
①+②得:x+4+3-x+5=4a,
∴a=3,x=2.
在Rt△F1F2A中,|F1F2|2=|AF1|2+|AF2|2,
∴4c2=4+16=20,
∴c=
.
5
∴椭圆的离心率为e=
.
5
3
故答案为:
.
5
3