设矩阵A、B为同阶方阵,且A、B的行列式分别为:|A|=2,|B|=3,则矩阵AB的行列式|AB|=?答案就是6,但是为什么呢?有什么原理?
问题描述:
设矩阵A、B为同阶方阵,且A、B的行列式分别为:|A|=2,|B|=3,则矩阵AB的行列式|AB|=?
答案就是6,但是为什么呢?有什么原理?
答
|AB| = |A| |B| = 2*3 = 6.