1990/1990*1991+1990/1991*1992+.+1990/1999*2000用简式法

问题描述:

1990/1990*1991+1990/1991*1992+.+1990/1999*2000
用简式法

1990*(1/1990-1/1991+1/1991-1/1992+...+1/1999-1/2000)
=1990(1/1990-1/2000)
=1/200

=1990(1/1990-1/2000)=1/200

因为,1990/1990*1991=1990*(1/1990-1/1991)
原式=1990*(1/1990-1/1991+1/1991-1/1992+……1/1999-1/2000)
=1990*(1/1990-1/2000)
=1999/2000

1990/1990*1991+1990/1991*1992+......+1990/1999*2000=1990*(1/1990*1991+1/1991*1992+......+1/1999*2000)=1990*(1/1990-1/1991+1/1991-1/1992+……+1/1999-1/2000)=1990*(1/1990-1/2000)=1-1990/2000=1/200

因为1990/1990*1991=1990*(1/1990-1/1991),其它的以此类推,提取1990后正好每个加数项分解成两项和后面的加数项可以加减抵消,所以有
1990*(1/1990-1/1991+1/1991-1/1992+...+1/1999-1/2000)
=1990(1/1990-1/2000)
=1/200

=1990(1/1990*1991+1/1991*1992+.......+1/1999*2000)
=1990(1/1990-1/1991+1/1991-1/1992+.......+1/1999-1/2000)
=1990(1/1990-1/2000)
=1-1990/2000
=10/2000
=1/200