已知等差数列﹛An﹜的前n项和为Sn,公差d≠0,且S3+S5=50,A1,A4,A13成等比数列.设﹛An分之Bn﹜是首相为1,公比为3的等比数列,求数列﹛Bn﹜的前N项和Tn

问题描述:

已知等差数列﹛An﹜的前n项和为Sn,公差d≠0,且S3+S5=50,A1,A4,A13成等比数列.设﹛An分之Bn﹜是首相为1,
公比为3的等比数列,求数列﹛Bn﹜的前N项和Tn

(1)设等差数列的公差为d,则
∵S3+S5=50,a1,a4,a13成等比数列,
∴3a1+3d+5a1+10d=50,(a1+3d)2=a1(a1+12d)
∵公差d≠0,∴a1=3,d=2
∴数列{an}的通项公式an=2n+1;
(2)据题意得bn=a2n=2×2n+1.
∴数列{bn}的前n项和公式:Tn=(2×2+1)+(2×22+1)+…+(2×2n+1)=2×(2+22+…+2n)+n=2×
2(1-2n)1-2
+n=2n+2+n-4.菁优网的,亲,望采纳

a1、a4、a13成等比数列,则a4²=a1×a13(a1+3d)²=a1(a1+12d)整理,得9d²-6a1d=0d(3d-2a1)=0d≠0,因此只有3d-2a1=0a1=(3/2)dS3+S5=3a1+3d+5a1+10d=8a1+13d=8(3/2)d+13d=25d=50d=2a1=(3/2)d=3an=a1+(n-1)d...