当抛物线y=x²
问题描述:
当抛物线y=x²
答
=|2x0-y-4|/根号[2^2+(-1)^2] =|2X0-x0^2-4|/根号5 d要最小则|2X0-x0^2-4|=|-(x0-1)^2-3|要最小当x0=1时,取到最小,
答
=|2x0-y-4|/根号[2^2+(-1)^2] =|2X0-x0^2-4|/根号5 d要最小则|2X0-x0^2-4|=|-(x0-1)^2-3|要最小当x0=1时,取到最小,