在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形.(1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长);若不能请说明理由.
问题描述:
在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC、CB与点D、点E,图①,②,③是旋转得到的三种图形.
(1)观察线段PD和PE之间的有怎样的大小关系,并以图②为例,加以说明;
(2)△PBE是否构成等腰三角形?若能,指出所有的情况(即求出△PBE为等腰三角形时CE的长);若不能请说明理由.
答
知识点:本题考查了等腰三角形的性质与判定;此题是分类讨论题,应分情况进行论证,不能漏解.辅助线的作出是解答本题的关键.
(1)PD=PE.以图②为例,如图,连接PC∵△ABC是等腰直角三角形,P为斜边AB的中点,∴PC=PB,CP⊥AB,∠DCP=∠B=45°,又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°∴∠DPC=∠EPB∴△DPC≌△EPB(ASA)∴PD=PE;(2)能...
答案解析:(1)连接PC,通过证明△DPC≌△EPB,得出PD=PE.
(2)分EP=EB、EP=PB时、BE=BP三种情况进行解答.
考试点:等腰三角形的判定与性质.
知识点:本题考查了等腰三角形的性质与判定;此题是分类讨论题,应分情况进行论证,不能漏解.辅助线的作出是解答本题的关键.