如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE(1)线段AF和BE有怎样的大小关系?请证明你的结论;(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由.
问题描述:
如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE
(1)线段AF和BE有怎样的大小关系?请证明你的结论;
(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由.
答
知识点:本题主要考查旋转的性质:旋转前后图形的大小和形状不变,只是位置发生了变化.证两条线段相等,通常是证这两条线段所在的两个三角形全等,类似的题,证明方法基本不变.
(1)AF=BE.证明:在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,∴AC=BC,CF=CE,∠ACF=∠BCE=60°,在△AFC与△BEC中,AC=BC∠ACF=∠BCECF=CE,∴△AFC≌△BEC(SAS),∴AF=BE.(2)成立.理由:在△AFC和...
答案解析:(1)根据题中所给的等边三角形的条件,两对边对应相等,有一个角都等于60°,变换这个60°的对应角,利用SAS证AF和BE所在的三角形全等;
(2)利用了等边三角形的性质,根据特殊角和旋转不变性确定两线段相等.
考试点:旋转的性质;全等三角形的判定与性质;等边三角形的性质.
知识点:本题主要考查旋转的性质:旋转前后图形的大小和形状不变,只是位置发生了变化.证两条线段相等,通常是证这两条线段所在的两个三角形全等,类似的题,证明方法基本不变.