答
(1)连接CF、NG,如图,∴D、C、G三点共线,∴CE=CF,DE⊥BC,∵MN是直角三角形CME斜边上的中线,∴MN=12CE,又∵NG是三角形CEF的中位线,∴NG=12CF,∴NG=NM;∴MCGE四点共圆,又∠MEG=45°,∴∠MNG=90,即三角形...
答案解析:(1)连接NG、CF,由题意可得CE=CF,易证MCGE四点共圆,即MN=NG,根据圆周角和圆心角的关系,可得∠MNG=90,即可证得;
(2)连接CF,CD,BE,NG,易证△BDE≌△CDF,则BE=CF,根据三角形中位线的性质,可得MN=NG,∠GNC+∠MNC=90°,即△MNG是等腰直角三角形,即可证得;
(3)连接PD,DM,PD为三角形ABF中位线,PD平行AF,PD=AF,在三角形ABC中,DM为中位线,DM=AC,MN=BE=CF,D,M,N共线,DN=(BC+CF),BC=AC,DP=DN,三角形DPN是等腰直角三角形,PN/CF===(+1).
考试点:等腰直角三角形;旋转的性质;相似三角形的判定与性质.
知识点:本题主要考查了等腰直角三角形、旋转的性质、相似三角形的判定和性质,要熟练掌握等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质,要注意根据等腰三角形的性质和相似三角形的判定和性质,借助辅助线来解答.