设f(x)=(x-1)(x-2)……(x-n)/(x+1)(x+2)……(x+n),求导f'(1)我算的结果是(-1)^n/(n+1),

问题描述:

设f(x)=(x-1)(x-2)……(x-n)/(x+1)(x+2)……(x+n),求导f'(1)
我算的结果是(-1)^n/(n+1),

f(x)=(x-1)(x-2)……(x-n)/(x+1)(x+2)……(x+n)
=(x-1)[(x-2)……(x-n)/(x+1)(x+2)……(x+n)]
=(x-1)'[(x-2)……(x-n)/(x+1)(x+2)……(x+n)]+(x-1)[(x-2)……(x-n)/(x+1)(x+2)……(x+n)]'
f(1)=(1-2)……(1-n)/(1+1)(1+2)……(1+n)
=(-1)^(n-1)*1*2*...*(n-1)/2*3*...*(n+1)
=(-1)^(n-1)/(n(n+1)),

(-1)^(n-1)/(n(n+1)),