多元函数求极值为什么用AC-B^2判断有无极值?还有就是当AC-B^2>0时,为什么A>0有极小值,A<0有极大值?
问题描述:
多元函数求极值为什么用AC-B^2判断有无极值?
还有就是当AC-B^2>0时,为什么A>0有极小值,A<0有极大值?
答
这个是一个定理呀,只是书上好象没有给出严格的证明。
答
这个用二元函数的泰勒展开式就很好理解及证明了:f(x,y) = f(a,b) + f'x(a,b)(x - a) + f'y(a,b)(y - b) + 1/2*[f"xx(a,b)(x-a)^2 + f"yy(a,b)(y-b)^2 + 2f"xy(a,b)(x-a)(y-b)] + h ,这里h为余项=f(a,b) + f'x(a,b)(...