给出代数式√[(x+1)^2+1]+√[(x-3)^2+4]的几何意义√[(x+1)^2+1]+√[(x-3)^2+4]=√[(x+1)^2+(0-1)^2]+√[(x-3)^2+(0+2)^2]x轴上一点 P(x,0)到两点A(-1,1),B(3,-2)的距离之和显然当APB在一直线且P在AB之间时有最小值这个最小值就是AB的距离能否解释一下为什么它的几何意义是这个?

问题描述:

给出代数式√[(x+1)^2+1]+√[(x-3)^2+4]的几何意义
√[(x+1)^2+1]+√[(x-3)^2+4]
=√[(x+1)^2+(0-1)^2]+√[(x-3)^2+(0+2)^2]
x轴上一点 P(x,0)到两点A(-1,1),B(3,-2)的距离之和
显然当APB在一直线且P在AB之间时有最小值
这个最小值就是AB的距离
能否解释一下为什么它的几何意义是这个?