圆与圆的位置关系已知圆C:X^2+Y^2-2MX+4Y+M^2-5=0圆C':X^2+Y^2+2X-2MY+M^2-3=0当M为何数时,两圆外切?外离?相交?内切?内含?

问题描述:

圆与圆的位置关系
已知圆C:X^2+Y^2-2MX+4Y+M^2-5=0
圆C':X^2+Y^2+2X-2MY+M^2-3=0
当M为何数时,两圆外切?外离?相交?内切?内含?

X^2+Y^2-2MX+4Y+M^2-5=0
化成圆的标准方程
(x-m)^2+(y+2)^2=3^2
X^2+Y^2+2X-2MY+M^2-3=0
化成圆的标准方程
(x+1)^2+(y-m)^2=2^2
由此可见,两圆分别为
以(m,-2)为圆心,以3为半径的圆
以(-1,m)为圆心,以2为半径的圆
欲两圆外切?则圆心的距离之和为半径之和
则(m+1)^2+(-2-m)^2=5^2
有2m^2+6m-20=0
m^2+3m-10=0
解得m=2 m=-5
外离?则要求圆心距离大于半径之和
即(m+1)^2+(-2-m)^2>5^2
解得m>2 m相交?则要求圆心距离小于半径之和大于半径之差
1^2根据(m+1)^2+(-2-m)^2解得-512m^2+6m+4>0
m^2+3m+2>0
m>-1 m结合-5得到-5内切?则要求圆心距离d等于半径之差
(m+1)^2+(-2-m)^2=1
解出m=-1 m=-2
内含?则要求圆心距离小于半径之差
(m+1)^2+(-2-m)^2〈1
解出-2〈m

圆C:X^2+Y^2-2MX+4Y+M^2-5=0 和 圆C':X^2+Y^2+2X-2MY+M^2-3=0 X^2 + Y^2 - 2MX + 4Y + M^2 - 5 = X^2 - 2MX + M^2 + Y^2 + 4Y + 4 - 9= (X-M)^2 + (Y+2)^2 - 9,X^2 + Y^2 + 2X - 2MY + M^2 - 3 = X^2 + 2X + 1 + Y^...