1-2/1-4/1-8/1-16/1-32/1-64/1=?简便计算

问题描述:

1-2/1-4/1-8/1-16/1-32/1-64/1=?简便计算

1-1/2-1/4-1/8-1/16-1/32-1/64
=1-(1/2+1/4+1/8+1/16+1/32+1/64+1/64-1/64)
=1-(1/2+1/4+1/8+1/16+1/32+1/32-1/64)
=1-(1/2+1/4+1/8+1/16+1/16-1/64)
=1-(1/2+1/4+1/8+1/8-1/64)
=1-(1/2+1/4+1/4-1/64)
=1-(1/2+1/2-1/64)
=1-(1-1/64)
=1-1+1/64
=1/64

楼主要求的是简便计算:
原式=(1/2+1/4+1/8)+(1/16+1/32+1/64)
=((4+2+1)/8+(4+2+1)/64
=8*(4+2+1)/64+(4+2+1)/64
=9*7/64
=63/64

1-1/2-1/4-1/8-1/16-1/32-1/64
=1-(1/2+1/4+1/8+1/16+1/32+1/64)
=1-63/64
=1/64