高数极限题求教若实数b满足 |b|>1 则lim(1+b+b^2...+b^(n-1) )/b^n =?数列{an} 1/n^2 1≤n≤1000 n^2/(n^2-2n) n>1001 则{an}极限值A、 0 B、1 C、0or1 D、不存在谢谢大家第二提是两种情况 分大括号的
问题描述:
高数极限题求教
若实数b满足 |b|>1 则lim(1+b+b^2...+b^(n-1) )/b^n =?
数列{an} 1/n^2 1≤n≤1000 n^2/(n^2-2n) n>1001 则{an}极限值
A、 0 B、1 C、0or1 D、不存在
谢谢大家
第二提是两种情况 分大括号的
答
第一题:分子为等比数列,得(1-b^n)/(1-b),原式化为(b^n-1)/(b^(n+1)-b^n),然后抓大头,分子分母同除b^n,可得极限为1/(b-1);
第二题:当n→+∞时,显然n>1001,只要算出后面的式子的极限就行了,先约分,再用罗比达法则就可算出是1了。
应该对的吧。
答
1.lim(1+b+b^2...+b^(n-1) )/b^n =LIM(1-b^n)/(1-b)b^n=0
2.数列极限与前 n项无关。{an}极限值==LIM n^2/(n^2-2n) n=0
答
1.分子用等比求和公式:lim(1+b+b^2...+b^(n-1) )/b^n n→+∞=lim(1-b^n)/[(1-b)·b^n] n→+∞=lim(1/b^n-1)(1-b)n→+∞∵ |b|>1∴0<1/|b|<1∴(1/b)^n=1/b^n→0,n→+∞∴原极限=(0-1)/(1-b)=1/(b-1)2.an...
答
1+b+b^2...+b^(n-1)=(b^n-1)/(b-1)
lim(1+b+b^2...+b^(n-1) )/b^n =1/(b-1)*lim(b^n-1)/b^n=1/(b-1)
第二题看不明白式子,写得太乱!