向量组等价的证明,题在这里:第二个是我自己的做法向量组β1,β2...βn记为B 向量组α1,α2...αn记为A则由题目可以看到B=AK,B可以用A线性表示,但是对于A来说,应该证出A=K^-1B.但是在这之前,先要证|K|≠0或者K是满秩的,答案是不是有些欠妥?

问题描述:

向量组等价的证明,
题在这里:
第二个是我自己的做法
向量组β1,β2...βn记为B
向量组α1,α2...αn记为A
则由题目可以看到B=AK,B可以用A线性表示,
但是对于A来说,应该证出A=K^-1B.但是在这之前,先要证|K|≠0或者K是满秩的,答案是不是有些欠妥?

感觉答案的做法比较简洁既然α1,α2,α3,α4,α5,┈┈αn 可由β1,β2,β3,┈┈βn线性表示,那就表示K是可逆的,因为从答案可以看出K^-1=[(2-n)/(n-1),1/(n-1),1/(n-1),...,1/(n-1)][1/(n-1),(2-n)/(n-1),1/(n-1),......