如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.
问题描述:
如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.
(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?若正确,请证明;若不正确,请举例说明;
(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.
答
知识点:注意点在特殊位置时所得到的关系,判断边相等,通常要找全等三角形.
(1)不正确.若在正方形GAEF绕点A顺时针旋转45°,这时点F落在线段AB或AB的延长线上.(或将正方形GAEF绕点A顺时针旋转,使得点F落在线段AB或AB的延长线上).如图:设AD=a,AG=b,则DF=a2+2b2>a,BF=|AB-AF|=|a-2...
答案解析:(1)显然,当A,F,B在同一直线上时,DF≠BF.
(2)注意使用两个正方形的边和90°的角,可判断出△DAG≌△BAE,那么DG=BE.
考试点:旋转的性质;全等三角形的判定与性质;正方形的性质.
知识点:注意点在特殊位置时所得到的关系,判断边相等,通常要找全等三角形.