证明 f(x)2x+1/x在区间[,正无穷)是单调递增函数设x1,x2 x2>x1>根号2/2f(x2)-f(x1)如果是增的话应该是大于0的,但后面的(1/x2-1/x1)

问题描述:

证明 f(x)2x+1/x在区间[,正无穷)是单调递增函数
设x1,x2 x2>x1>根号2/2
f(x2)-f(x1)
如果是增的话应该是大于0的,但后面的(1/x2-1/x1)

二分之根号二 是分界点

f(x)的导数
f'(x)=2-1/x^2
当x>=√2/2时
f'(x)=2-1/x^2>=0
即证明f(x)区间[√2/2,﹢∞)是单调递增函数.