Dn=n![1-1/1!+1/2!-1/3!+...+(-1)的n次方乘以1/n!]Show that if n is a positive integer,then =C(n,0)Dn+C(n,1)Dn-1+…+C(n,n-1)D1+C(n,n)D0,where Dk is the number of derangements of k objects.

问题描述:

Dn=n![1-1/1!+1/2!-1/3!+...+(-1)的n次方乘以1/n!]
Show that if n is a positive integer,then =C(n,0)Dn+C(n,1)Dn-1+…+C(n,n-1)D1+C(n,n)D0,where Dk is the number of derangements of k objects.

看图