英语数学题翻译Let X be a finite set of positive integers and A a subset of X. Prove that there exists a subset B of X such that A equals the set of elements of X which divide an odd number of elements of B.

问题描述:

英语数学题翻译
Let X be a finite set of positive integers and A a subset of X. Prove that there exists a subset B of X such that A equals the set of elements of X which divide an odd number of elements of B.

(已知)X为一个有限正整数集,A为它的子集。证明X有一个子集B且可使A等于X在除去B中奇数元素之后的元素集合。

令X为一个有限正整数集,A为它的子集。证明有一个子集B存在,并且A等于除B中奇数外的X中的元素。
汗,你试着证证看。

X是正整数的有限集合
A是X的子集
证明存在一个X的子集B,使得A等于X中各元素除去B中的奇数