以知实数满a.b.c足|a-1|+|b+3|+|3c-1|=0求(abc)^2008/(a^9b^3c^2)的值=?

问题描述:

以知实数满a.b.c足|a-1|+|b+3|+|3c-1|=0求(abc)^2008/(a^9b^3c^2)的值=?

a = 1
b = -3
c= 1/3
原式 = (-1)^2008/(1^9×(-3)^3×(1/3)^2) = -1/3

|a-1|+|b+3|+|3c-1|=0
故a=1,b=-3,c=1/3
(abc)^2008/(a^9b^3c^2)
=【1*(-3)*(1/3)】^2008/[1*(-27)*(1/9)]
=1/(-3)
=-1/3