f(x)=a(sin^6x+cos^6x)+b(sin^4x+cos^4x)+6sin^2xcos^2x的值与x无关且等于1
问题描述:
f(x)=a(sin^6x+cos^6x)+b(sin^4x+cos^4x)+6sin^2xcos^2x的值与x无关且等于1
答
f(x)=a(sin²x+cos²x)(sin^4x-sin²xcos²x+cos^4x)+b(sin^4x+cos^4x)+6sin^2xcos^2x=a(sin^4x-sin²xcos²x+cos^4x)+b(sin^4x+cos^4x)+6sin^2xcos^2x=(a+b)(sin^4x+cos^4x)+(6-a)sin^2xco...