请教关于高阶无穷小加低阶无穷小等价于低阶无穷小的问题在什么时候可以用?例如:(1)x—>0求极限的时候,分子为x^2-x^3那么可以直接写成x^2吗?(2)同样情况下分子为e^x-1 x^3可以写成e^x-1吗?

问题描述:

请教关于高阶无穷小加低阶无穷小等价于低阶无穷小的问题
在什么时候可以用?例如:(1)x—>0求极限的时候,分子为x^2-x^3那么可以直接写成x^2吗?(2)同样情况下分子为e^x-1 x^3可以写成e^x-1吗?

作为一个独立的因子时就可以这样用,其实就是无穷小替换 查看原帖>>