求高一数学必修二关于sin(90-x)之类的公式

问题描述:

求高一数学必修二关于sin(90-x)之类的公式

记住口诀:奇变偶不变,符号看象限。
奇偶是指所加角度是90°的奇偶倍,变是指sin=>cos,cos=>sin。如sin(90°-x)就是1倍,奇数,sin变成cos;cos(x+180°)就是2倍,偶数,cos不变;……
符号是指将x看做是锐角,看变后的角度是在哪个象限,定出正负号,如sin(90°+x)就是90°+锐角,在第二象限,sin是负号,所以sin(90°+x)=-cosx;cos(180-x)=cosx

诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)

公式一  设α为任意角,终边相同的角的同一三角函数的值相等:对于x轴正半轴为起点轴而言  弧度制下的角的表示:  sin(2kπ+α)=sinα (k∈Z)  cos(2kπ+α)=cosα (k∈Z)  tan(2kπ+α)=tanα ...

sin(180du-x)=sinx