单项式乘以多项式(x^n-x^n-1+x)*x^n+1(x^2n+1)(-x^2n)(+x^n+2)

问题描述:

单项式乘以多项式
(x^n-x^n-1+x)*x^n+1
(x^2n+1)(-x^2n)(+x^n+2)

[x^n-x^(n-1)+x]*x^(n+1)
=x^(2n+1)-x^2n+x^(n+2)